Prevention of pressure-induced deep tissue injury using intermittent electrical stimulation.
نویسندگان
چکیده
Pressure ulcers develop due to morphological and biochemical changes triggered by the combined effects of mechanical deformation, ischemia, and reperfusion that occur during extended periods of immobility. The goal of this study was to test the effectiveness of a novel electrical stimulation technique in the prevention of deep tissue injury (DTI). We propose that contractions elicited by intermittent electrical stimulation (IES) in muscles subjected to constant pressure would induce periodic relief in internal pressure; additionally, each contraction would also restore blood flow to the tissue. The application of constant pressure to the quadriceps muscles of rats generated a DTI that affected 60 +/- 15% of the compressed muscle as assessed by magnetic resonance imaging. In contrast, in the groups of rats that received IES at 10- and 5-min intervals, DTI of the muscle was limited to 16 +/- 16 and 25 +/- 13%, respectively. Injury to the muscle was corroborated by histology. In an experiment with a human volunteer, compression of the buttocks reduced the oxygenation level of the muscles by approximately 4%; after IES, oxygenation levels increased by approximately 6% beyond baseline. Concurrently, the surface pressure profiles of the loaded muscles were redistributed and the high-pressure points were reduced during each IES-induced contraction. The results of this study indicate that IES significantly reduces the amount of DTI by increasing the oxygen available to the tissue and by modifying the pressure profiles of the loaded muscles. This presents a promising technique for the prevention of pressure ulcers in immobilized and/or insensate individuals.
منابع مشابه
Changes in superficial pressure and tissue oxygenation levels due to contractions elicited by intermittent electrical stimulation for the pre- vention of deep tissue injury
Deep tissue injury (DTI) is a severe type of pressure ulcer that commonly affects people with spinal cord injury (SCI). We have proposed the use of intermittent electrical stimulation (IES) as a novel preventative technique for DTI. The main goal of this study was to compare the changes in superficial pressure and tissue oxygenation generated by two different IES protocols: Continuous or Bursti...
متن کاملPrevention of deep tissue injury through muscle contractions induced by intermittent electrical stimulation after spinal cord injury in pigs.
Deep tissue injury (DTI) is a severe medical complication that commonly affects those with spinal cord injury. It is caused by prolonged external loading of the muscles, entrapping them between a bony prominence and the support surface. The entrapment causes excessive mechanical deformation and increases in interstitial pressure, leading to muscle breakdown deep around the bony prominences. We ...
متن کاملReversal of Deep Tissue Injury using Intermittent Electrical Stimulation
Deep tissue injury (DTI) is a dangerous form of pressure ulcer as it causes substantial subcutaneous damage before being detected. There are currently no practical and reliable forms of early detection or reversal of DTI. We propose the use of intermittent electrical stimulation (IES) to reverse the injury before it reaches the skin. Adult rats with spinal cord injury were used to assess the ef...
متن کاملControl of epileptic seizures by electrical low frequency deep brain stimulation: A review of probable mechanisms
Epilepsy is the most common neurological disease with no definitive method in treatment. Notably, the main way to treat and control epileptic seizures is drug therapy. However, about 20-30% of patients with epilepsy are drug resistant and require other therapeutic manners. Deep brain stimulation is a new therapeutic strategy for these patients. Conspicuously, there are no clear answers for basi...
متن کاملComparison of Agonist vs. Antagonist Stimulation on Triceps Surae Spasticity in Spinal Cord
Objectives: One of the most common and disabling complications that affects individuals with spinal cord injury is spasticity. The purpose of this study is to compare the effect of agonist and antagonist electrical stimulations on triceps surae muscle spasticity in patients with spinal cord injury. Methods: A total of 30 subjects with spinal cord injury were considered for the study. They were...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of applied physiology
دوره 102 5 شماره
صفحات -
تاریخ انتشار 2007